乐文小说网

手机浏览器扫描二维码访问

第八十四章 帽子问题(第2页)

(2)、3顶红帽子,4顶黑帽子,5顶白帽子,8个人。

(3)、n顶黑帽子,n-1顶白帽子,n个人(n>0)。

(4)、1顶颜『色』1的帽子,2顶颜『色』2的帽子,……,99顶颜『色』99的帽子,100顶颜『色』100的帽子,共5000个人。

(5)、有红黄绿三种颜『色』的帽子各1顶2顶3顶,但具体不知道哪种颜『色』是几顶,有6个人。

(6)、有不知多少人(至少两人)排成一排,有黑白两种帽子,每种帽子的数目都比人数少1。

大家可以先不看我下面的分析,试着做做这几题。

如果按照上面3顶黑帽2顶白帽时的推理方法去做,那么10个人就可以把我们累死,别说5000个人了。

但是(3)中的n是个抽象的数,考虑一下怎么解决这个问题,对解决一般的问题大有好处。

假设现在n个人都已经戴好了帽子,问排在最后的那一个人他头上的帽子是什么颜『色』,什么时候他会回答‘知道’?很显然,只有在他看见前面n-1个人都戴着白帽时才可能,因为这时所有的n-1顶白帽都已用光,在他自己的脑袋上只能顶着黑帽子,只要前面有一顶黑帽子,那么他就无法排除自己头上是黑帽子的可能──即使他看见前面所有人都是黑帽,他还是有可能戴着第n顶黑帽。

现在假设最后那个人的回答是‘不知道’,那么轮到问倒数第二人。

根据最后面那位的回答,他能推断出什么呢?如果他看见的都是白帽,那么他立刻可以推断出自己戴的是黑帽──要是他也戴着白帽,那么最后那人应该看见一片白帽,问到他时他就该回答‘知道’了。

但是如果倒数第二人看见前面至少有一顶黑帽,他就无法作出判断──他有可能戴着白帽,但是他前面的那些黑帽使得最后那人无法回答‘知道’;他自然也有可能戴着黑帽。

[]恋千年84

这样的推理可以继续下去,但是我们已经看出了苗头。

最后那个人可以回答‘知道’当且仅当他看见的全是白帽,所以他回答‘不知道’当且仅当他至少看见了一顶黑帽。

这就是所有帽子颜『色』问题的关键!

如果最后一个人回答‘不知道’,那么他至少看见了一顶黑帽,所以如果倒数第二人看见的都是白帽,那么最后那个人看见的至少一顶黑帽在哪里呢?不会在别处,只能在倒数第二人自己的头上。

这样的推理继续下去,对于队列中的每一个人来说就成了:

‘在我后面的所有人都看见了至少一顶黑帽,否则的话他们就会按照相同的判断断定自己戴的是黑帽,所以如果我看见前面的人戴的全是白帽的话,我头上一定戴着我身后那个人看见的那顶黑帽。

我们知道最前面的那个人什么帽子都看不见,就不用说看见黑帽了,所以如果他身后的所有人都回答说‘不知道’,那么按照上面的推理,他可以确定自己戴的是黑帽,因为他身后的人必定看见了一顶黑帽──只能是第一个人他自己头上的那顶。

事实上很明显,第一个说出自己头上是什么颜『色』帽子的那个人,就是从队首数起的第一个戴黑帽子的人,也就是那个从队尾数起第一个看见前面所有人都戴白帽子的人。

这样的推理也许让人觉得有点循环论证的味道,因为上面那段推理中包含了‘如果别人也使用相同的推理’这样的意思,在逻辑上这样的自指式命题有点危险。

但是其实这里没有循环论证,这是类似数学归纳法的推理,每个人的推理都建立在他后面那些人的推理上,而对于最后一个人来说,他的身后没有人,所以他的推理不依赖于其他人的推理就可以成立,是归纳中的第一个推理。

稍微思考一下,我们就可以把上面的论证改得适合于任何多种颜『色』的推论:

‘如果我们可以从假设断定某种颜『色』的帽子一定会在队列中出现,从队尾数起第一个看不见这种颜『色』的帽子的人就立刻可以根据和此论证相同的论证来作出判断,他戴的是这种颜『色』的帽子。

现在所有我身后的人都回答不知道,所以我身后的人也看见了此种颜『色』的帽子。

如果在我前面我见不到此颜『色』的帽子,那么一定是我戴着这种颜『色』的帽子。

当然第一个人的初始推理相当简单:‘队列中一定有人戴这种颜『色』的帽子,现在我看不见前面有人戴这颜『色』的帽子,那它只能是戴在我的头上了。

对于题(1)事情就变得很明显,3顶红帽子,4顶黑帽子,5顶白帽子给10个人戴,队列中每种颜『色』至少都该有一顶,于是从队尾数起第一个看不见某种颜『色』的帽子的人就能够断定他自己戴着这种颜『色』的帽子,通过这点我们也可以看到,最多问到从队首数起的第三人时,就应该有人回答“知道”

了,因为从队首数起的第三人最多只能看见两顶帽子,所以最多看见两种颜『色』,如果他后面的人都回答“不知道”

,那么他前面一定有两种颜『色』的帽子,而他头上戴的一定是他看不见的那种颜『色』的帽子。

题(2)也一样,3顶红帽子,4顶黑帽子,5顶白帽子给8个人戴,那么队列中一定至少有一顶白帽子,因为其它颜『色』加起来一共才7顶,所以队列中一定会有人回答‘知道’。

题(4)的规模大了一点,但是道理和(2)完全一样。

100种颜『色』的5050顶帽子给5000人戴,前面99种颜『色』的帽子数量是1+……+99=4950,所以队列中一定有第100种颜『色』的帽子(至少有50顶),所以如果自己身后的人都回答“不知道”

,那么那个看不见颜『色』100帽子的人就可以断定自己戴着这种颜『色』的帽子。

至于(5)、(6)‘有红黄绿三种颜『色』的帽子各1顶2顶3顶,但具体不知道哪种颜『色』是几顶,有6个人”

以及“有不知多少人排成一排,有黑白两种帽子,每种帽子的数目都比人数少1’,原理完全相同,我就不具体分析了。

本月排行榜
热门小说推荐
天择

天择

上天选择我来这走一世,我便要只争朝夕!在这个百家争鸣的乱世,在这个也是百家争霸的乱世!!命格破军,便要领千军万众,横刀立马命格紫微,便要泽被苍...

武极苍穹

武极苍穹

完本精品,强烈推荐!以武为尊的大世界,弱肉强食,杀伐果断,只有真正的强者才能够践踏万物苍穹,睥睨众生。少年陆轩,生来意志坚韧,有一天,他遇到了一个神秘老头,从此世界上所有的天才都消失了。新书万道剑尊已发表,同样精品,请大家移步去看看...

特级诡兵

特级诡兵

他,天生拥有听力异能,自小又在深山道观练就一身本领。他,入伍从军,机缘巧合之下,获得可以穿越异世的神器,结实神一样的师傅。他,险死还生,走出一条不寻常的道路,但仍不忘初心,守护华夏,守卫地球。他,战功赫赫,世界联盟组织给了他一个特别的称号特级诡兵!从普通士兵,到特级特种兵,再到身怀异宝,转战异世。他就是特级诡兵马紫风!敢犯我华夏者,虽远必诛!...

带着APP当领主

带着APP当领主

手机上突然冒出个世界之王的APP,什么鬼,点一下就被送到异界,当上了小小领主。从此开着科技外挂,种种田打打怪,带上魔灵美少女们,我们去征服世界!...

每日热搜小说推荐